Global attractor and finite dimensionally for a class of dissipative equations of BBM's type.
We study the structure of a differentiable autonomous system on the plane with non-positive divergence outside a bounded set. It is shown that under certain conditions such a system has a global attractor. The main result here can be seen as an improvement of the results of Olech and Meisters in [7,9] concerning the global asymptotic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.
The purpose of this paper is to prove the existence of a symplectic realization for a large class of regular Poisson manifolds with Riemannian two dimensional characteristic foliation. To do so, we will show that the homotopy groupoid of a Riemannian foliation is locally trivial.