Generalized Hamilton flow and Poisson relation for the scattering kernel
We provide a unified approach to different types of shadowing. This enables us to generalize some known shadowing result.
An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented...
We discuss the remaining obstacles to prove Smale's conjecture about the C¹-density of hyperbolicity among surface diffeomorphisms. Using a C¹-generic approach, we classify the possible pathologies that may obstruct the C¹-density of hyperbolicity. We show that there are essentially two types of obstruction: (i) persistence of infinitely many hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly exhibits homoclinic tangencies. In the course of our discussion,...
Let be a probability measure on which is invariant and ergodic for , and . Let be a local diffeomorphism on some open set. We show that if and , then at -a.e. point . In particular, if is a piecewise-analytic map preserving then there is an open -invariant set containing supp such that is piecewise-linear with slopes which are rational powers of . In a similar vein, for as above, if is another integer and are not powers of a common integer, and if is a -invariant...
We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the ɛ-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone of admissible metrics with respect to a given transformation...
We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds. A C¹ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the h-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.
We study Markov shifts over countable (finite or countably infinite) alphabets, i.e. shifts generated by incidence matrices. In particular, we derive necessary and sufficient conditions for the existence of a Gibbs state for a certain class of infinite Markov shifts. We further establish a characterization of the existence, uniqueness and ergodicity of invariant Gibbs states for this class of shifts. Our results generalize the well-known results for finitely irreducible Markov shifts.
We discuss the geometric structures defined by Young in [9, 10], which are used to prove the existence of an ergodic absolutely continuous invariant probability measure and to study the decay of correlations in expanding or hyperbolic systems on large parts.