Random mappings with a single absorbing center and combinatorics of discretizations of the logistic mapping.
Let (Σ,ϱ) be the one-sided symbolic space (with two symbols), and let σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and the set of recurrent points respectively. In this paper, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set 𝒥 satisfying 𝒥 ⊂ R(σ)-A(σ).