Maps of the interval Ljapunov stable on the set of nonwandering points.
During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator defined on the Köthe sequence space exhibits distributional -chaos for any and any is obtained. Under this assumption, the principal measure of is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional -chaos for any .
This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2∞ was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.
Si dimostra l'esistenza di infinite soluzioni «multi-bump» - e conseguentemente il comportamento caotico - per una classe di sistemi Hamiltoniani del secondo ordine della forma per sufficientemente piccolo. Qui , e sono funzioni strettamente positive e periodiche e è un potenziale superquadratico (ad esempio ).