Page 1

Displaying 1 – 9 of 9

Showing per page

Maximal distributional chaos of weighted shift operators on Köthe sequence spaces

Xinxing Wu (2014)

Czechoslovak Mathematical Journal

During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator B w n : λ p ( A ) λ p ( A ) defined on the Köthe sequence space λ p ( A ) exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) and any n is obtained. Under this assumption, the principal measure of B w n is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) .

Maximal scrambled sets for simple chaotic functions.

Víctor Jiménez López (1996)

Publicacions Matemàtiques

This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2∞ was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.

Multibump solutions for Hamiltonian systems with fast and slow forcing

Vittorio Coti Zelati, Margherita Nolasco (1999)

Bollettino dell'Unione Matematica Italiana

Si dimostra l'esistenza di infinite soluzioni «multi-bump» - e conseguentemente il comportamento caotico - per una classe di sistemi Hamiltoniani del secondo ordine della forma - q ¨ + q = g 1 ω t + g 2 t / ω V q per ω sufficientemente piccolo. Qui q R n , g 1 e g 2 sono funzioni strettamente positive e periodiche e V è un potenziale superquadratico (ad esempio V q = q 4 ).

Currently displaying 1 – 9 of 9

Page 1