Twist systems on the interval
Let I be a compact real interval and let f:I → I be continuous. We describe an interval analogy of the irrational circle rotation that occurs as a subsystem of the dynamical system (I,f)-we call it an irrational twist system. Using a coding we show that any irrational twist system is strictly ergodic. We also prove that irrational twist systems exist as subsystems of a large class of systems (I,f) having a cycle of odd period greater than one.