The search session has expired. Please query the service again.
Un homéomorphisme de Brouwer est un homéomorphisme du plan, sans point fixe, préservant l’orientation. Le théorème des translations planes affirme qu’un tel homéomorphisme s’obtient toujours en « recollant des translations ». Dans cet article, nous introduisons un nouvel invariant de conjugaison des homéomorphismes de Brouwer, l’ensemble oscillant, pour tenter de décrire assez précisément la manière dont s’effectue le recollement des translations.
D’une part, nous utilisons la notion d’ensemble...
Nous définissons la notion d’ensemble bien ordonné de torsion nulle pour les applications déviant la verticale. Contrairement aux études variationnelles de [14] et [1], nous proposons une approche topologique. On retrouve pour ces ensembles un grand nombre de propriétés des ensembles bien ordonnés décrites dans [11]. En reprenant un argument de G.Hall [7], nous montrons en particulier que pour tout nombre de rotation, il existe un ensemble bien ordonné de torsion nulle.
We prove that for every ϵ > 0 there exists a minimal diffeomorphism f: ² → ² of class and semiconjugate to an ergodic translation with the following properties: zero entropy, sensitivity to initial conditions, and Li-Yorke chaos. These examples are obtained through the holonomy of the unstable foliation of Mañé’s example of a derived-from-Anosov diffeomorphism on ³.
Le Calvez a montré que si est un homéomorphisme isotope à l’identité d’une surface admettant un relèvement au revêtement universel n’ayant pas de points fixes, alors il existe un feuilletage topologique de transverse à la dynamique. Nous montrons que ce résultat se généralise au cas où admet des points fixes. Nous obtenons alors un feuilletage topologique singulier transverse à la dynamique dont les singularités sont un ensemble fermé de points fixes de .
Currently displaying 1 –
5 of
5