Page 1

Displaying 1 – 5 of 5

Showing per page

The degenerate C. Neumann system I: symmetry reduction and convexity

Holger Dullin, Heinz Hanßmann (2012)

Open Mathematics

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ,...

The gap phenomenon in the dimension study of finite type systems

Boris Kruglikov (2012)

Open Mathematics

Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.

Currently displaying 1 – 5 of 5

Page 1