Page 1

Displaying 1 – 8 of 8

Showing per page

A necessary and sufficient condition for the existence of an exponential attractor

Dalibor Pražák (2003)

Open Mathematics

We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.

Cone invariance and squeezing properties for inertial manifolds for nonautonomous evolution equations

Norbert Koksch, Stefan Siegmund (2003)

Banach Center Publications

In this paper we summarize an abstract approach to inertial manifolds for nonautonomous dynamical systems. Our result on the existence of inertial manifolds requires only two geometrical assumptions, called cone invariance and squeezing property, and some additional technical assumptions like boundedness or smoothing properties. We apply this result to processes (two-parameter semiflows) generated by nonautonomous semilinear parabolic evolution equations.

Dynamics of a Lotka-Volterra map

Francisco Balibrea, Juan Luis García Guirao, Marek Lampart, Jaume Llibre (2006)

Fundamenta Mathematicae

Given the plane triangle with vertices (0,0), (0,4) and (4,0) and the transformation F: (x,y) ↦ (x(4-x-y),xy) introduced by A. N. Sharkovskiĭ, we prove the existence of the following objects: a unique invariant curve of spiral type, a periodic trajectory of period 4 (given explicitly) and a periodic trajectory of period 5 (described approximately). Also, we give a decomposition of the triangle which helps to understand the global dynamics of this discrete system which is linked with the behavior...

On inertial manifolds for reaction-diffusion equations on genuinely high-dimensional thin domains

M. Prizzi, K. P. Rybakowski (2003)

Studia Mathematica

We study a family of semilinear reaction-diffusion equations on spatial domains Ω ε , ε > 0, in l lying close to a k-dimensional submanifold ℳ of l . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by H ¹ s ( Ω ) . The definition of H ¹ s ( Ω ) , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable characterizations...

Currently displaying 1 – 8 of 8

Page 1