Displaying 321 – 340 of 418

Showing per page

Rapid Emergence of Co-colonization with Community-acquired and Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Strains in the Hospital Setting

E. M. C. D’Agata, G. F. Webb, J. Pressley (2010)

Mathematical Modelling of Natural Phenomena

Background: Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), a novel strain of MRSA, has recently emerged and rapidly spread in the community. Invasion into the hospital setting with replacement of the hospital-acquired MRSA (HA-MRSA) has also been documented. Co-colonization with both CA-MRSA and HA-MRSA would have important clinical implications given differences in antimicrobial susceptibility profiles and the potential...

Redundancy relations for fault diagnosis in nonlinear uncertain systems

Alexey Shumsky (2007)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system model into...

Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model

M. Serhani, N. Raissi, P. Cartigny (2009)

Mathematical Modelling of Natural Phenomena

In this work we deal with the design of the robust feedback control of wastewater treatment system, namely the activated sludge process. This problem is formulated by a nonlinear ordinary differential system. On one hand, we develop a robust analysis when the specific growth function of the bacterium μ is not well known. On the other hand, when also the substrate concentration in the feed stream sin is unknown, we provide an observer of system and propose a design of robust feedback control in...

Simulation and design of extraction and separation fluidic devices

Bijan Mohammadi, Juan G. Santiago (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the combination of a state control and shape design approaches for the optimization of micro-fluidic channels used for sample extraction and separation of chemical species existing in a buffer solution. The aim is to improve the extraction and identification capacities of electroosmotic micro-fluidic devices by avoiding dispersion of the extracted advected band.

Simulation and design of extraction and separation fluidic devices

Bijan Mohammadi, Juan G. Santiago (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the combination of a state control and shape design approaches for the optimization of micro-fluidic channels used for sample extraction and separation of chemical species existing in a buffer solution. The aim is to improve the extraction and identification capacities of electroosmotic micro-fluidic devices by avoiding dispersion of the extracted advected band.

Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique

Alaeddin Malek, Najmeh Hosseinipour-Mahani (2015)

Kybernetika

In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called Z -matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from...

Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting using Variational Iteration Method

Barari, A., Ghotbi, Abdoul R., Omidvar, M., Ganji, D. D. (2009)

Serdica Journal of Computing

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Some unresolved issued in non-linear population dynamics.

Joe N. Perry (1997)

Qüestiió

The Lyapunov exponent is a statistic that measures the sensitive dependence of the dynamic behaviour of a system on its initial conditions. Estimates of Lyapunov exponents are often used to characterize the qualitative population dynamics of insect time series. The methodology for estimation of the exponent for an observed, noisy, short ecological time series is still under development. Some progress has been made recently in providing measures of error for these exponents. Studies that do not account...

Spatially-distributed coverage optimization and control with limited-range interactions

Jorge Cortés, Sonia Martínez, Francesco Bullo (2005)

ESAIM: Control, Optimisation and Calculus of Variations

This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect...

Currently displaying 321 – 340 of 418