Existence theory for single and multiple solutions to semipositone discrete Dirichlet boundary value problems with singular dependent nonlinearities.
Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).
This paper is concerned with extending Gehring theory to be applicable to Rothe's approximate solutions to hyperbolic differential equations.
Im ersten Teil des Artikels konstruiert der Verfasser eine geschlossene Bewegung, die an der Ähnlichkeitsgruppe definiert wird. Solche Bewegungen beschreiben periodisch sich wiederholende Prozesse für den Fall des beweglichen Gebildes, welches sich während der Bewegung ähnlich deformiert. Der zweite Teil verallgemeinert die geschlossene Bewebungen durch äquiforme Bewegungen, die so gegeben werden, dass eine Folge von erzeugenden Punkten dieselbe Bahnkurve beschreibt in der Art, dass die einzelnen...
The authors consider the nonlinear difference equation with . They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.