Displaying 161 – 180 of 517

Showing per page

Fixed points of meromorphic functions and of their differences and shifts

Zong-Xuan Chen (2013)

Annales Polonici Mathematici

Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that m a x τ ( f ( z ) ) , τ ( Δ c f ( z ) ) = m a x τ ( f ( z ) ) , τ ( f ( z + c ) ) = m a x τ ( Δ c f ( z ) ) , τ ( f ( z + c ) ) = σ ( f ( z ) ) , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).

Geschlossene äquiforme Bewegungen der Räume endlicher Dimension

Josef Somer (1979)

Aplikace matematiky

Im ersten Teil des Artikels konstruiert der Verfasser eine geschlossene Bewegung, die an der Ähnlichkeitsgruppe definiert wird. Solche Bewegungen beschreiben periodisch sich wiederholende Prozesse für den Fall des beweglichen Gebildes, welches sich während der Bewegung ähnlich deformiert. Der zweite Teil verallgemeinert die geschlossene Bewebungen durch äquiforme Bewegungen, die so gegeben werden, dass eine Folge von erzeugenden Punkten dieselbe Bahnkurve beschreibt in der Art, dass die einzelnen...

Global attractivity of the equilibrium of a nonlinear difference equation

John R. Graef, C. Qian (2002)

Czechoslovak Mathematical Journal

The authors consider the nonlinear difference equation x n + 1 = α x n + x n - k f ( x n - k ) , n = 0 , 1 , . 1 where α ( 0 , 1 ) , k { 0 , 1 , } and f C 1 [ [ 0 , ) , [ 0 , ) ] ( 0 ) with f ' ( x ) < 0 . They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.

Currently displaying 161 – 180 of 517