Page 1 Next

Displaying 1 – 20 of 51

Showing per page

Équations aux différences associées à des groupes, fonctions représentatives.

Nicolas Marteau (2004)

Annales de l’institut Fourier

Inspiré par un travail de J.-P. Bézivin et F. Gramain sur les systèmes d’équations aux différences, on caractérise les sous-groupes H d’un groupe de Lie réel (resp. complexe) G , pour lesquels toute fonction f : G continue (resp. entière) telle que l’ensemble des H -translatées engendrent un -espace vectoriel de dimension finie, engendrent aussi un -espace vectoriel de dimension finie par G - translation. On fait le lien avec les systèmes d’équations aux différences à coefficients constants.

Exact asymptotics of nonlinear difference equations with levels 1 and 1 +

G.K Immink (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We study a class of nonlinear difference equations admitting a 1 -Gevrey formal power series solution which, in general, is not 1 - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.

Existence and global attractivity of periodic solutions in a higher order difference equation

Chuanxi Qian, Justin Smith (2018)

Archivum Mathematicum

Consider the following higher order difference equation x ( n + 1 ) = f ( n , x ( n ) ) + g ( n , x ( n - k ) ) , n = 0 , 1 , where f ( n , x ) and g ( n , x ) : { 0 , 1 , } × [ 0 , ) [ 0 , ) are continuous functions in x and periodic functions in n with period p , and k is a nonnegative integer. We show the existence of a periodic solution { x ˜ ( n ) } under certain conditions, and then establish a sufficient condition for { x ˜ ( n ) } to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.

Existence criteria for positive solutions of a nonlinear difference inequality

Sui Cheng, Guang Zhang (2000)

Annales Polonici Mathematici

This paper is concerned with a class of nonlinear difference inequalities which include many different classes of difference inequalities and equations as special cases. By means of a Riccati type transformation, necessary and sufficient conditions for the existence of eventually positive solutions and positive nonincreasing solutions are obtained. Various type of comparison theorems are also derived as applications, which extends many theorems in the literature.

Currently displaying 1 – 20 of 51

Page 1 Next