Identification of discrete chaotic maps with singular points.
We study a discrete model of the Yang-Mills equations on a combinatorial analog of . Self-dual and anti-self-dual solutions of discrete Yang-Mills equations are constructed. To obtain these solutions we use both the techniques of a double complex and the quaternionic approach.
In this paper, by using an iterative scheme, we advance the main oscillation result of Zhang and Liu (1997). We not only extend this important result but also drop a superfluous condition even in the noniterated case. Moreover, we present some illustrative examples for which the previous results cannot deliver answers for the oscillation of solutions but with our new efficient test, we can give affirmative answers for the oscillatory behaviour of solutions. For a visual explanation of the examples,...