Page 1

Displaying 1 – 12 of 12

Showing per page

Generalized hermite polynomials obtained by embeddings of the q-Heisenberg algebra

Joachim Seifert (1997)

Banach Center Publications

Several ways to embed q-deformed versions of the Heisenberg algebra into the classical algebra itself are presented. By combination of those embeddings it becomes possible to transform between q-phase-space and q-oscillator realizations of the q-Heisenberg algebra. Using these embeddings the corresponding Schrödinger equation can be expressed by various difference equations. The solutions for two physically relevant cases are found and expressed as Stieltjes Wigert polynomials.

Global attractivity of the equilibrium of a nonlinear difference equation

John R. Graef, C. Qian (2002)

Czechoslovak Mathematical Journal

The authors consider the nonlinear difference equation x n + 1 = α x n + x n - k f ( x n - k ) , n = 0 , 1 , . 1 where α ( 0 , 1 ) , k { 0 , 1 , } and f C 1 [ [ 0 , ) , [ 0 , ) ] ( 0 ) with f ' ( x ) < 0 . They give sufficient conditions for the unique positive equilibrium of (0.1) to be a global attractor of all positive solutions. The results here are somewhat easier to apply than those of other authors. An application to a model of blood cell production is given.

Global bifurcation of homoclinic trajectories of discrete dynamical systems

Jacobo Pejsachowicz, Robert Skiba (2012)

Open Mathematics

We prove the existence of an unbounded connected branch of nontrivial homoclinic trajectories of a family of discrete nonautonomous asymptotically hyperbolic systems parametrized by a circle under assumptions involving topological properties of the asymptotic stable bundles.

Global continuum of positive solutions for discrete p -Laplacian eigenvalue problems

Dingyong Bai, Yuming Chen (2015)

Applications of Mathematics

We discuss the discrete p -Laplacian eigenvalue problem, Δ ( φ p ( Δ u ( k - 1 ) ) ) + λ a ( k ) g ( u ( k ) ) = 0 , k { 1 , 2 , ... , T } , u ( 0 ) = u ( T + 1 ) = 0 , where T > 1 is a given positive integer and φ p ( x ) : = | x | p - 2 x , p > 1 . First, the existence of an unbounded continuum 𝒞 of positive solutions emanating from ( λ , u ) = ( 0 , 0 ) is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any λ > 0 and all solutions are ordered. Thus the continuum 𝒞 is a monotone continuous curve globally defined for all λ > 0 .

Currently displaying 1 – 12 of 12

Page 1