Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Second order linear q -difference equations: nonoscillation and asymptotics

Pavel Řehák (2011)

Czechoslovak Mathematical Journal

The paper can be understood as a completion of the q -Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear q -difference equations. The q -Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice q 0 : = { q k : k 0 } with q > 1 . In addition to recalling the existing concepts of q -regular variation and q -rapid variation we introduce q -regularly bounded functions and prove many related properties. The q -Karamata theory is then...

Solutions to conjectures on a nonlinear recursive equation

Özkan Öcalan, Oktay Duman (2020)

Czechoslovak Mathematical Journal

We obtain solutions to some conjectures about the nonlinear difference equation x n + 1 = α + β x n - 1 e - x n , n = 0 , 1 , , α , β > 0 . More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.

Some notes on oscillation of two-dimensional system of difference equations

Zdeněk Opluštil (2014)

Mathematica Bohemica

Oscillatory properties of solutions to the system of first-order linear difference equations Δ u k = q k v k Δ v k = - p k u k + 1 , are studied. It can be regarded as a discrete analogy of the linear Hamiltonian system of differential equations. We establish some new conditions, which provide oscillation of the considered system. Obtained results extend and improve, in certain sense, results presented in Opluštil (2011).

Currently displaying 41 – 45 of 45

Previous Page 3