Displaying 221 – 240 of 1085

Showing per page

Criterion of p -criticality for one term 2 n -order difference operators

Petr Hasil (2011)

Archivum Mathematicum

We investigate the criticality of the one term 2 n -order difference operators l ( y ) k = Δ n ( r k Δ n y k ) . We explicitly determine the recessive and the dominant system of solutions of the equation l ( y ) k = 0 . Using their structure we prove a criticality criterion.

Curvature on a graph via its geometric spectrum

Paul Baird (2013)

Actes des rencontres du CIRM

We approach the problem of defining curvature on a graph by attempting to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star. How this should be done depends upon the global structure of the graph which is reflected in its geometric spectrum. Mean curvature is the most natural curvature that arises in this context and corresponds to local liftings of the graph into a suitable Euclidean space. We discuss some examples.

Développements asymptotiques q -Gevrey et séries G q -sommables

Changgui Zhang (1999)

Annales de l'institut Fourier

Nous donnons une version q -analogue de l’asymptotique Gevrey et de la sommabilité de Borel, dues respectivement à G. Watson et E. Borel et systématiquement développées depuis une quinzaine d’années par J.-P. Ramis, Y. Sibuya, etc. Le but de ces auteurs était l’étude des équations différentielles dans le champ complexe. De même notre but est l’étude des équations aux q -différences dans le champ complexe, dans la ligne de G.D. Birkhoff et W.J. Trjitzinsky.Plus précisément, nous introduisons une nouvelle...

Difference functions of periodic measurable functions

Tamás Keleti (1998)

Fundamenta Mathematicae

We investigate some problems of the following type: For which sets H is it true that if f is in a given class ℱ of periodic functions and the difference functions Δ h f ( x ) = f ( x + h ) - f ( x ) are in a given smaller class G for every h ∈ H then f itself must be in G? Denoting the class of counter-example sets by ℌ(ℱ,G), that is, ( , G ) = H / : ( f G ) ( h H ) Δ h f G , we try to characterize ℌ(ℱ,G) for some interesting classes of functions ℱ ⊃ G. We study classes of measurable functions on the circle group 𝕋 = / that are invariant for changes on null-sets (e.g. measurable...

Difference of Function on Vector Space over F

Kenichi Arai, Ken Wakabayashi, Hiroyuki Okazaki (2014)

Formalized Mathematics

In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on R were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over F have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes a general purpose attack against...

Difference operators from interpolating moving least squares and their deviation from optimality

Thomas Sonar (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.

Difference operators from interpolating moving least squares and their deviation from optimality

Thomas Sonar (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp.37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.

Currently displaying 221 – 240 of 1085