The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
236
A characterization of oscillation and nonoscillation of the Emden-Fowler difference equation
is given, jointly with some asymptotic properties. The problem of the coexistence of all possible types of nonoscillatory solutions is also considered and a comparison with recent analogous results, stated in the half-linear case, is made.
We have established sufficient conditions for oscillation of a class of first order neutral impulsive difference equations with deviating arguments and fixed moments of impulsive effect.
In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form
is studied under the assumption
New oscillation criteria have been established which generalize some of the existing results in the literature.
This paper is divided in two parts. In the first part we study a convergent -analog of the divergent Euler series, with , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding -difference equation. In the second part, we work under the assumption . In this case, at least four different -Borel sums of a divergent power series solution of an irregular singular...
We study the solutions and attractivity of the difference equation for where and are real numbers such that
In this paper we establish some new nonlinear difference inequalities. We also present an application of one inequality to certain nonlinear sum-difference equation.
Currently displaying 61 –
80 of
236