Displaying 41 – 60 of 225

Showing per page

Développements asymptotiques q -Gevrey et séries G q -sommables

Changgui Zhang (1999)

Annales de l'institut Fourier

Nous donnons une version q -analogue de l’asymptotique Gevrey et de la sommabilité de Borel, dues respectivement à G. Watson et E. Borel et systématiquement développées depuis une quinzaine d’années par J.-P. Ramis, Y. Sibuya, etc. Le but de ces auteurs était l’étude des équations différentielles dans le champ complexe. De même notre but est l’étude des équations aux q -différences dans le champ complexe, dans la ligne de G.D. Birkhoff et W.J. Trjitzinsky.Plus précisément, nous introduisons une nouvelle...

Dispersions for linear differential equations of arbitrary order

František Neuman (1997)

Archivum Mathematicum

For linear differential equations of the second order in the Jacobi form y ' ' + p ( x ) y = 0 O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.

Espacios de producto interno (II).

Palaniappan Kannappan (1995)

Mathware and Soft Computing

Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.

Functional equations and a theoretical model of DLTS

Václav Tryhuk (1995)

Applications of Mathematics

The paper deals with a theoretical model of the Crowel-Alipanahi correlator. The model describes a new possible effect of the DLTS spectra-exponential and nonexponential transient capacitance, normal or anomalous spectra.

Functional equations in real-analytic functions

G. Belitskii, V. Tkachenko (2000)

Studia Mathematica

The equation φ (x) = g(x,φ (x)) in spaces of real-analytic functions is considered. Connections between local and global aspects of its solvability are discussed.

Currently displaying 41 – 60 of 225