On a class of complex functional equations.
Page 1 Next
Rieppo, Jarkko (2007)
Annales Academiae Scientiarum Fennicae. Mathematica
Kuczma, M. (1992)
Mathematica Pannonica
John A. Baker (1993)
Aequationes mathematicae
Janusz Brzdek (1993)
Aequationes mathematicae
Henrik Stetkaer (1996)
Aequationes mathematicae
E.R. BISHOP (1971)
Aequationes mathematicae
Jerzy Połubiński (2002)
Mathematica Bohemica
In this work we apply the method of a unique partition of a complex function of complex variables into symmetrical functions to solving a certain type of functional equations.
Elhoucien, Elqorachi, Akkouchi, Mohamed (2004)
International Journal of Mathematics and Mathematical Sciences
Drakakis, Konstantinos (2009)
Abstract and Applied Analysis
Mohamed Akkouchi, Allal Bakali, Belaid Bouikhalene, El Houcien El Qorachi (2006)
Extracta Mathematicae
Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ) ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.
Jens Schwaiger (1992)
Aequationes mathematicae
J. Matkowski (1971)
Annales Polonici Mathematici
Karol Baron (1989)
Aequationes mathematicae
Mario Bonk (1992)
Mathematische Zeitschrift
Jun, Kil-Woung, Lee, Yang-Hi, Lee, Juri (2008)
Journal of Inequalities and Applications [electronic only]
Kim, Gwang Hui, Dragomir, Sever S. (2006)
International Journal of Mathematics and Mathematical Sciences
Jens Schwaiger, Wolfgang Förg-Rob (1993)
Aequationes mathematicae
Fouad Lehlou, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj (2016)
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) and f(xσ(y)a)−f(xya)=2f(x)f(y), where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.
P.K. Sahoo, J. Chung, P. Kannappan (1997)
Aequationes mathematicae
Thomas Riedel, Prasanna K. Sahoo (1997)
Aequationes mathematicae
Page 1 Next