On the continuous solutions of the Golab-Schinzel equation.
Karol Baron (1989)
Aequationes mathematicae
Svetozar Kurepa (1987)
Publications de l'Institut Mathématique
M. Kwapisz, J. Turo (1979)
Aequationes mathematicae
Marian Kwapisz (1977)
Annales Polonici Mathematici
Harald Fripertinger, Ludwig Reich (2012)
ESAIM: Proceedings
Let x be an indeterminate over ℂ. We investigate solutions αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of are polynomials in ck(s).It is possible to replace...
DONALD GIROD (1973)
Aequationes mathematicae
Gerd Herzog, Christoph Schmoeger (2006)
Studia Mathematica
Let E be a real normed space and a complex Banach algebra with unit. We characterize the continuous solutions f: E → of the functional equation .
T.M.K. Davison (1974)
Aequationes mathematicae
H. Shank, H.-H. Kairies, L.J. Dickey (1975)
Aequationes mathematicae
H. Shank, H.-H. Kairies, L.J. Dickey (1975)
Aequationes mathematicae
C.F.K. Jung, V. Boonyasombat (1976)
Aequationes mathematicae
C.F.K. Jung, V. Boonyasombat (1975)
Aequationes mathematicae
Mónica Sánchez Soler (1988)
Stochastica
In this paper we solve the functional equationH [tau(F,G), chi (F,G)] = H (F,G)where the unknowns tau and chi are two semigroups on a space of distribution functions, and H is a given pointwise binary operation on this space satisfying some regularity conditions.
J. Van der Mark (1974)
Aequationes mathematicae
J. PFANZAGL (1971)
Aequationes mathematicae
Shigeru Haruki (1982)
Aequationes mathematicae
Shigeru Haruki (1982)
Aequationes mathematicae
M.A. Taylor (1978)
Aequationes mathematicae
L. Sweet (1981)
Aequationes mathematicae
Nakmahachalasint, Paisan (2007)
International Journal of Mathematics and Mathematical Sciences