On the stability of some quadratic functional equation.
The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.
In this paper, we introduce Pexiderized generalized operators on certain special spaces introduced by Bielecki-Czerwik and investigate their norms.