On Solving A System Of Balanced Functional Equations On Quasigroups II
A. Krapež (1979)
Publications de l'Institut Mathématique
Marek Kuczma (1978)
Aequationes mathematicae
M. Kwapisz, J. Turo (1977)
Annales Polonici Mathematici
Wojciech Chojnacki (1988)
Colloquium Mathematicae
Nicole Brillouet-Belluot (1991)
Aequationes mathematicae
Bruce R. Ebanks (1979)
Mathematica Scandinavica
Roman Ger (1975)
Fundamenta Mathematicae
Roman Ger (1978)
Fundamenta Mathematicae
Roman Badora (1993)
Annales Polonici Mathematici
We present some extension of the concept of an invariant mean to a space of vector-valued mappings defined on a semigroup. Next, we apply it to the study of the stability of some functional equation.
Najdecki, Adam (2007)
Journal of Inequalities and Applications [electronic only]
Gajda, Zbigniew (1991)
International Journal of Mathematics and Mathematical Sciences
Zbigniew Gajda (1988)
Aequationes mathematicae
Janusz Matkowski (2004)
Open Mathematics
Janusz Matkowski (2003)
Open Mathematics
In [4], assuming among others subadditivity and submultiplicavity of a function ψ: [0, ∞)→[0, ∞), the authors proved a Hyers-Ulam type stability theorem for “ψ-additive” mappings of a normed space into a normed space. In this note we show that the assumed conditions of the function ψ imply that ψ=0 and, consequently, every “ψ-additive” mapping must be additive
Claudi Alsina, Eduard Bonet (1979)
Stochastica
We study and solve several functional equations which yield necessary and sufficient conditions for the sum of two uniformly distributed random variables to be uniformly distributed.
Tan, Liyun, Xiang, Shuhuang (2007)
Banach Journal of Mathematical Analysis [electronic only]
Pl. Kannappan, K. Baron (1993)
Aequationes mathematicae
Karol Baron, Peter Volkmann (1988)
Fundamenta Mathematicae
Park, Choonkil (2008)
Journal of Inequalities and Applications [electronic only]
Karol Baron (1989)
Aequationes mathematicae