Generalized Hyers-Ulam stability of quadratic functional equations: a fixed point approach.
There are many types of midconvexities, for example Jensen convexity, t-convexity, (s,t)-convexity. We provide a uniform framework for all the above mentioned midconvexities by considering a generalized middle-point map on an abstract space X. We show that we can define and study the basic convexity properties in this setting.
We discuss the problem of characterizing the possible asymptotic behaviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach space in small neighbourhoods of a fixed point. It turns out that under natural conditions, for the most part of initial approximations these iterates tend to "lie down" along a finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the Fréchet derivative at the fixed point and moreover the asymptotic behaviour of...