The search session has expired. Please query the service again.
The connection between the functional inequalities
and
is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.
La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...
The notion of relative measure of information in an abstract information space with generalized independence law is studied. The axiomatic definition is given and the form of dependence on the absolute measures is determined, as a solution of a system of functional equations.
An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
Let I be a real interval, J a subinterval of
I, p ≥ 2 an integer number, and
M1, ... , Mp : Ip → I
the continuous means. We consider the problem of invariance of the graphs of functions
ϕ : Jp−1 → I
with respect to the mean-type mapping
M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean
[7], we prove that if the graph of a continuous function
ϕ : Jp−1 → I
...
Currently displaying 1 –
20 of
37