R-and T-Groupoids: A Generalization of Groups.
Page 1 Next
M.A. Taylor (1975)
Aequationes mathematicae
Mohamadi, M., Cho, Y.J., Park, C., Vetro, P., Saadati, R. (2010)
Journal of Inequalities and Applications [electronic only]
Kalinowski, Józef (2006)
Beiträge zur Algebra und Geometrie
Hengkrawit, Charinthip, Laohakosol, Vichian, Udomkavanich, Patanee (2010)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Gselmann, Eszter (2009)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Bernard Randé (1993)
Journal de théorie des nombres de Bordeaux
On sait (Cobham) qu’une suite - et -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas - et -régulier. On montre dans cet article que, si une suite vérifie une récurrence - et -mahlérienne d’ordre un, elle est rationnelle.
Pl. Kannappan, B.R. Ebanks, C.T. Ng (1988)
Aequationes mathematicae
Rafał Kapica, Janusz Morawiec (2013)
Banach Center Publications
It has been proved recently that the two-direction refinement equation of the form can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation has also various interesting applications....
Marek Kuczma (1980)
Annales Polonici Mathematici
The existence of a unique solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.
Marek Cezary Zdun (1985)
Aequationes mathematicae
Detlef Laugwitz (1993)
Aequationes mathematicae
J. GER, A. SMAJDOR (1971)
Aequationes mathematicae
I. Daubechies, A. Cohen, G. Plonka (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
A. Járai (1982)
Aequationes mathematicae
JOHN A. BAKER (1971)
Aequationes mathematicae
Karl-Goswin Grosse-Erdmann (1989)
Aequationes mathematicae
A. Járai (1982)
Aequationes mathematicae
JOHN A. BAKER (1971)
Aequationes mathematicae
A. Járai, L. Székelyhidi (1996)
Aequationes mathematicae
Jean Dhombres (1988)
Aequationes mathematicae
Page 1 Next