Displaying 21 – 40 of 52

Showing per page

Relative rearrangement and interpolation inequalities.

J. Michel Rakotoson (2003)

RACSAM

We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived.

Remarks on strongly Wright-convex functions

Nelson Merentes, Kazimierz Nikodem, Sergio Rivas (2011)

Annales Polonici Mathematici

Some properties of strongly Wright-convex functions are presented. In particular it is shown that a function f:D → ℝ, where D is an open convex subset of an inner product space X, is strongly Wright-convex with modulus c if and only if it can be represented in the form f(x) = g(x)+a(x)+c||x||², x ∈ D, where g:D → ℝ is a convex function and a:X → ℝ is an additive function. A characterization of inner product spaces by strongly Wright-convex functions is also given.

Currently displaying 21 – 40 of 52