Some remarks on stability and solvability of linear functional equations.
We show that the theorem proved in [8] generalises the previous results concerning orientation-preserving iterative roots of homeomorphisms of the circle with a rational rotation number (see [2], [6], [10] and [7]).
First a stability result of Prager-Schwaiger [Prager W., Schwaiger J., Stability of the multi-Jensen equation, Bull. Korean Math. Soc., 2008, 45(1), 133–142] is generalized by admitting more general domains of the involved function and by allowing the bound to be not constant. Next a result by Cieplinski [Cieplinski K., On multi-Jensen functions and Jensen difference, Bull. Korean Math. Soc., 2008, 45(4), 729–737] is discussed. Finally a characterization of the completeness of a normed space in...
We prove some stability and hyperstability results for a generalization of the well known Fréchet functional equation, stemming from one of the characterizations of the inner product spaces. As the main tool we use a fixed point theorem for some function spaces. We end the paper with some new inequalities characterizing the inner product spaces.