Displaying 101 – 120 of 1591

Showing per page

A note on the convolution theorem for the Fourier transform

Charles S. Kahane (2011)

Czechoslovak Mathematical Journal

In this paper we characterize those bounded linear transformations T f carrying L 1 ( 1 ) into the space of bounded continuous functions on 1 , for which the convolution identity T ( f * g ) = T f · T g holds. It is shown that such a transformation is just the Fourier transform combined with an appropriate change of variable.

A pair of linear functional inequalities and a characterization of L p -norm

Dorota Krassowska, Janusz Matkowski (2005)

Annales Polonici Mathematici

It is shown that, under some general algebraic conditions on fixed real numbers a,b,α,β, every solution f:ℝ → ℝ of the system of functional inequalities f(x+a) ≤ f(x)+α, f(x+b) ≤ f(x)+β that is continuous at some point must be a linear function (up to an additive constant). Analogous results for three other similar simultaneous systems are presented. An application to a characterization of L p -norm is given.

A review of selected topics in majorization theory

Marek Niezgoda (2013)

Banach Center Publications

In this expository paper, some recent developments in majorization theory are reviewed. Selected topics on group majorizations, group-induced cone orderings, Eaton triples, normal decomposition systems and similarly separable vectors are discussed. Special attention is devoted to majorization inequalities. A unified approach is presented for proving majorization relations for eigenvalues and singular values of matrices. Some methods based on the Chebyshev functional and similarly separable vectors...

Currently displaying 101 – 120 of 1591