Stability of a quadratic functional equation in the spaces of generalized functions.
In this paper we prove the Hyers-Ulam stability of the following K-quadratic functional equation [...] where E is a real (or complex) vector space. This result was used to demonstrate the Hyers-Ulam stability on a set of Lebesgue measure zero for the same functional equation.
Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.