On approximate solutions of a functional equation in the class of differentiable functions
Kazimierz Dankiewicz (1989)
Annales Polonici Mathematici
Karol Baron (1983)
Annales Polonici Mathematici
Karol Baron, Witold Jarczyk (1985)
Aequationes mathematicae
J. Tabor, J. Chmielinski (1993)
Aequationes mathematicae
J. Tabor, J. Chmielinski (1993)
Aequationes mathematicae
Alsina, Claudi, Ger, Roman (1988)
International Journal of Mathematics and Mathematical Sciences
Claudi Alsina (1986)
Archivum Mathematicum
Inder Jeet Taneja, H. C. Gupta (1979)
Kybernetika
Karol Baron (2009)
Open Mathematics
We establish conditions under which Baire measurable solutions f of defined on a metrizable topological group are continuous at zero.
S. KUREPA (1973)
Aequationes mathematicae
Svetozar Kurepa (1972)
Aequationes mathematicae
Leśniak, Zbigniew (2007)
Abstract and Applied Analysis
Dieter Lutz (1981)
Aequationes mathematicae
J. Smital (1972)
Fundamenta Mathematicae
K.J. Heuvers, B.R. Ebanks, C.T. Ng (1991)
Aequationes mathematicae
Elhoucien, Elqorachi, Akkouchi, Mohamed (2004)
International Journal of Mathematics and Mathematical Sciences
P.D.T.A. Elliott (1978)
Aequationes mathematicae
S.L. Segal (1971/1972)
Jahresbericht der Deutschen Mathematiker-Vereinigung
Krzysztof Ciepliński, Zbigniew Leśniak (2013)
Banach Center Publications
In this paper, recent results on the existence and uniqueness of (continuous and homeomorphic) solutions φ of the equation φ ∘ f = g ∘ φ (f and g are given self-maps of an interval or the circle) are surveyed. Some applications of these results as well as the outcomes concerning systems of such equations are also presented.
Wilhelmina Smajdor (2010)
Annales Polonici Mathematici
Let I ⊂ ℝ be an interval, Y be a normed linear space and Z be a Banach space. We investigate the Banach space Lip₂(I,Z) of all functions ψ: I → Z such that , where [r,s,t;ψ]:= ((s-r)ψ(t)+(t-s)ψ(r)-(t-r)ψ(s))/((t-r)(t-s)(s-r)). We show that ψ ∈ Lip₂(I,Z) if and only if ψ is differentiable and its derivative ψ’ is Lipschitzian. Suppose the composition operator N generated by h: I × Y → Z, (Nφ)(t):= h(t,φ(t)), maps the set (I,Y) of all affine functions φ: I → Y into Lip₂(I,Z). We prove that if N is...