Stability of quartic functional equations in the spaces of generalized functions.
Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.
The paper deals with the stability of the fundamental equation of information of multiplicative type. It is proved that the equation in question is stable in the sense of Hyers and Ulam under some assumptions. This result is applied to prove the stability of a system of functional equations that characterizes the recursive measures of information of multiplicative type.
In economic systems, reactions to external shocks often come with a delay. On the other hand, agents try to anticipate future developments. Both can lead to difference-differential equations with an advancing argument. These are more difficult to handle than either difference or differential equations, but they have the merit of added realism and increased credibility. This paper generalizes a model from monetary economics by von Kalckreuth and Schröder. Working out its stability properties, we...
Let ϕ be an arbitrary bijection of . We prove that if the two-place function is subadditive in then must be a convex homeomorphism of . This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of are also given. We apply the above results to obtain several converses of Minkowski’s inequality.