Almost midconvex and almost convex set-valued functions
Consider the class of functional equationsg[F(x,y)] = H[g(x),g(y)],where g: E --> X, f: E x E --> E, H: X x X --> X, E is a set and (X,d) is a complete metric space. In this paper we prove that, under suitable hypotheses on F, H and ∂(x,y), the existence of a solution of the functional inequalityd(f[F(x,y)],H[f(x),f(y)]) ≤ ∂(x,y),implies the existence of a solution of the above equation.
Let I be an interval, 0 < λ < 1 be a fixed constant and A(x,y) = λx + (1-λ)y, x,y ∈ I, be the weighted arithmetic mean on I. A pair of strict means M and N is complementary with respect to A if A(M(x,y),N(x,y)) = A(x,y) for all x, y ∈ I. For such a pair we give results on the functional equation f(M(x,y)) = f(N(x,y)). The equation is motivated by and applied to the Matkowski-Sutô problem on complementary weighted quasi-arithmetic means M and N.
We show that any quasi-arithmetic mean and any non-quasi-arithmetic mean M (reasonably regular) are inconsistent in the sense that the only solutions f of both equations and are the constant ones.