A note on matrix summability and rates on convergence
The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in a Euclidean space, may lead to slow convergence of the constructed sequence when that sequence enters some narrow “corridor” between two or more convex sets. A way to leave such corridor consists in taking a big step at different moments during the iteration, because in that way the monotoneous behaviour that is responsible for the slow convergence may be interrupted. In this...
In finite-dimensional spaces the sum range of a series has to be an affine subspace. It has long been known that this is not the case in infinite-dimensional Banach spaces. In particular in 1984 M. I. Kadets and K. Woźniakowski obtained an example of a series whose sum range consisted of two points, and asked whether it was possible to obtain more than two, but finitely many points. This paper answers this question affirmatively, by showing how to obtain an arbitrary finite set as the sum range...