The best algebraic approximation in Hölder norm.
In this article, the issue of the best uniform approximation of circular arcs with parametrically defined polynomial curves is considered. The best uniform approximation of degree 2 to a circular arc is given in explicit form. The approximation is constructed so that the error function is the Chebyshev polynomial of degree 4; the error function equioscillates five times; the approximation order is four. For θ = π/4 arcs (quarter of a circle), the uniform error is 5.5 × 10−3. The numerical examples...
We show that a convex totally real compact set in admits an extremal array for Kergin interpolation if and only if it is a totally real ellipse. (An array is said to be extremal for when the corresponding sequence of Kergin interpolation polynomials converges uniformly (on ) to the interpolated function as soon as it is holomorphic on a neighborhood of .). Extremal arrays on these ellipses are characterized in terms of the distribution of the points and the rate of convergence is investigated....