On some properties of LB-splines
We consider the Picard operators and in exponential weighted spaces. We give some elementary and approximation properties of these operators.
We investigate quadrature rules with Laplace end corrections that depend on a parameter β. Specific values of β yield sixth order rules. We apply our results to approximating the sum of slowly converging series s = Σi=1∞ f(i + 1/2) where f ∈ C 6 with its sixth derivative of constant sign on [m, ∞) and ∫ m∞ f(x)dx is known for m ∈ ℕ. Several examples show the efficiency of this method. This paper continues the results from [Solak W., Szydełko Z., Quadrature rules with Gregory-Laplace end corrections,...
In recent papers the authors studied global smoothness preservation by certain univariate and multivariate linear operators over compact domains. Here the domain is ℝ. A very general positive linear integral type operator is introduced through a convolution-like iteration of another general positive linear operator with a scaling type function. For it sufficient conditions are given for shift invariance, preservation of global smoothness, convergence to the unit with rates, shape preserving and...
The approximation in the uniform norm of a continuous function f(x) = f(x₁,...,xₙ) by continuous sums g₁(h₁(x)) + g₂(h₂(x)), where the functions h₁ and h₂ are fixed, is considered. A Chebyshev type criterion for best approximation is established in terms of paths with respect to the functions h₁ and h₂.
AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.The paper is concerned with establishing direct estimates for convolution operators on homogeneous Banach spaces of periodic functions by means of appropriately defined Kfunctional. The differential operator in the K-functional is defined by means of strong limit and described explicitly in terms of its Fourier coefficients. The description is simple and independent of the homogeneous Banach space. Saturation of such...
Under some assumptions on the matrix of a summability method, whose rows are sequences of bounded variation, we obtain a generalization and an improvement of some results of Xie-Hua Sun and L. Leindler.