Page 1

Displaying 1 – 14 of 14

Showing per page

T f -splines et approximation par T f -prolongement

N. Benbourhim, J. Gaches (1993)

Studia Mathematica

We study T f -splines (existence, uniqueness and convergence) in Banach spaces with a view to applications in approximation. Our approach allows, in particular, considering some problems in a more regular domain, and hence facilitating their solution.

The Lebesgue constant for the periodic Franklin system

Markus Passenbrunner (2011)

Studia Mathematica

We identify the torus with the unit interval [0,1) and let n,ν ∈ ℕ with 0 ≤ ν ≤ n-1 and N:= n+ν. Then we define the (partially equally spaced) knots t j = ⎧ j/(2n) for j = 0,…,2ν, ⎨ ⎩ (j-ν)/n for for j = 2ν+1,…,N-1. Furthermore, given n,ν we let V n , ν be the space of piecewise linear continuous functions on the torus with knots t j : 0 j N - 1 . Finally, let P n , ν be the orthogonal projection operator from L²([0,1)) onto V n , ν . The main result is l i m n , ν = 1 | | P n , ν : L L | | = s u p n , 0 ν n | | P n , ν : L L | | = 2 + ( 33 - 18 3 ) / 13 . This shows in particular that the Lebesgue constant of the classical Franklin...

The Lebesgue constants for the Franklin orthogonal system

Z. Ciesielski, A. Kamont (2004)

Studia Mathematica

To each set of knots t i = i / 2 n for i = 0,...,2ν and t i = ( i - ν ) / n for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space ν , n of all piecewise linear and continuous functions on I = [0,1] with knots t i and the orthogonal projection P ν , n of L²(I) onto ν , n . The main result is l i m ( n - ν ) ν | | P ν , n | | = s u p ν , n : 1 ν n | | P ν , n | | = 2 + ( 2 - 3 ) ² . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².

The Lower Estimate for Bernstein Operator

Gal, Sorin G., Tachev, Gancho T. (2013)

Mathematica Balkanica New Series

MSC 2010: 41A10, 41A15, 41A25, 41A36For functions belonging to the classes C2[0; 1] and C3[0; 1], we establish the lower estimate with an explicit constant in approximation by Bernstein polynomials in terms of the second order Ditzian-Totik modulus of smoothness. Several applications to some concrete examples of functions are presented.

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Currently displaying 1 – 14 of 14

Page 1