On a Map from the Splines into a Positive Cone with Applications.
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Institute of Mathematics, Academia Sinica, Beijing 100080, People’s Republic of China.The best constant problem for Bernstein operators with respect to the second modulus of smoothness is considered. We show that for any 1/2 ≤ a < 1, there is an N(a) ∈ N such that for n ≥ N(a), 1−a≤k, n≤a, sup | Bn (f, k/n) − f(k/n) | ≤ cω2(f, 1/√n), where c is a constant,0 < c < 1.
Chebyshevian box splines were introduced in [5]. The purpose of this paper is to show some new properties of them in the case when the weight functions are of the form , where the functions are periodic functions of one variable. Then we consider the problem of approximation of continuous functions by Chebyshevian box splines.
We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.