Hardy spaces on compact Lie groups
Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) (1/2 < p≤2) where f belongs to the Hardy space defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.
This subject has several natural points of view, but we shall start with the one that corresponds to the following question: Is there something like Littlewood-Paley theory which is useful for analyzing the geometry of subsets of Rn, in much the same way that traditional Littlewood-Paley theory is good for analyzing functions and operators?
We establish new results on the space BV of functions with bounded variation. While it is well known that this space admits no unconditional basis, we show that it is almost characterized by wavelet expansions in the following sense: if a function f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class of weak-l1 type estimates. These weak estimates can be employed to prove many interesting results. We use them to identify the interpolation spaces between BV and Sobolev...
There is no constraint on the relation between the Fourier and Hausdorff dimension of a set beyond the condition that the Fourier dimension must not exceed the Hausdorff dimension.
ACM Computing Classification System (1998): G.1.2.Moduli for numerical finding of the polynomial of the best Hausdorff approximation of the functions which differs from zero at just one point or having one jump and partially constant in programming environment MATHEMATICA are proposed. They are tested for practically important functions and the results are graphically illustrated. These moduli can be used for scientific research as well in teaching process of Approximation theory and its application....
This is a survey on transformation of fractal type sets and measures under orthogonal projections and more general mappings.
We study the high-dimensional Hausdorff operators on the Morrey space and on the Campanato space. We establish their sharp boundedness on these spaces. Particularly, our results solve an open question posted by E. Liflyand (2013).
We investigate heat-diffusion and Poisson integrals associated with Laguerre and special Hermite expansions on weighted spaces with weights.