A moment theory approach to the Riesz theorem on the conjugate function with general measures
Page 1
Mischa Cotlar, Cora Sadowsky (1975)
Studia Mathematica
Lozada-Chang, Li-Vang (2005)
Electronic Journal of Probability [electronic only]
Christian Berg, J. P. Reus Christensen (1981)
Annales de l'institut Fourier
Let be a positive Radon measure on the real line having moments of all orders. We prove that the set of polynomials is note dense in for any , if is indeterminate. If is determinate, then is dense in for , but not necessarily for . The compact convex set of positive Radon measures with same moments as is studied in some details.
Georges Dostor (1880)
Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale
Gutknecht, Martin H., Hochbruck, Marlis (1994)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
David Walnut (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
J.-P. Antoine, M. Vause (1981)
Annales de l'I.H.P. Physique théorique
I. Gohberg, H.J. Landau (1997)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Sklyar, G. M., Velkovsky, I. L. (1998)
Proceedings of Equadiff 9
М.С. Гиновян (1980)
Zapiski naucnych seminarov Leningradskogo
С.А. Авдонин (1977)
Zapiski naucnych seminarov Leningradskogo
Г.М. Александров, Г.М. Ильмушкин (1974)
Sibirskij matematiceskij zurnal
Page 1