We consider the Fejér (or first arithmetic) means of double Fourier series of functions belonging to one of the Hardy spaces , , or . We prove that the maximal Fejér operator is bounded from or into weak-, and also bounded from into . These results extend those by Jessen, Marcinkiewicz, and Zygmund, which involve the function spaces , , and with 0 < μ < 1, respectively. We establish analogous results for the maximal conjugate Fejér operators. On closing, we formulate two conjectures....