Sharp Inequalities and Geometric Manifolds.
We establish the following sharp local estimate for the family of Riesz transforms on . For any Borel subset A of and any function , , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, , 1 < p < 2, and , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.
Sharp estimates are obtained for averaging operators associated to hypersurfaces in given as graphs of homogeneous functions. An application to the regularity of an initial value problem is given.
For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: , for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.
In this paper we establish a formal connection between the average decay of the Fourier transform of functions with respect to a given measure and the Hausdorff behavior of that measure. We also present a generalization of the classical restriction theorem of Stein and Tomas replacing the sphere with sets of prefixed Hausdorff dimension n - 1 + α, with 0 < α < 1.
Mathematics Subject Classification: 42B10In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on R^d. More precisely, we characterize the functions in the Schwartz space S(R^d) and in L^2k(R^d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support.
Let f ∈ L∞ and g ∈ L2 be supported on [0,1]. Then the principal value integral below exists in L1.p.v. ∫ f(x + y) g(x - y) dy / y.
In the present paper, we prove weighted inequalities for the Dunkl transform (which generalizes the Fourier transform) when the weights belong to the well-known class Bp. As application, we obtain the Pitt’s inequality for power weights.