Page 1

Displaying 1 – 3 of 3

Showing per page

L p -improving properties of certain singular measures on the Heisenberg group

Pablo Rocha (2022)

Mathematica Bohemica

Let μ A be the singular measure on the Heisenberg group n supported on the graph of the quadratic function ϕ ( y ) = y t A y , where A is a 2 n × 2 n real symmetric matrix. If det ( 2 A ± J ) 0 , we prove that the operator of convolution by μ A on the right is bounded from L ( 2 n + 2 ) ( 2 n + 1 ) ( n ) to L 2 n + 2 ( n ) . We also study the type set of the measures d ν γ ( y , s ) = η ( y ) | y | - γ d μ A ( y , s ) , for 0 γ < 2 n , where η is a cut-off function around the origin on 2 n . Moreover, for γ = 0 we characterize the type set of ν 0 .

Currently displaying 1 – 3 of 3

Page 1