Page 1

Displaying 1 – 5 of 5

Showing per page

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class of C c p t functions...

Estimates of Fourier transforms in Sobolev spaces

V. Kolyada (1997)

Studia Mathematica

We investigate the Fourier transforms of functions in the Sobolev spaces W 1 r 1 , . . . , r n . It is proved that for any function f W 1 r 1 , . . . , r n the Fourier transform f̂ belongs to the Lorentz space L n / r , 1 , where r = n ( j = 1 n 1 / r j ) - 1 n . Furthermore, we derive from this result that for any mixed derivative D s f ( f C 0 , s = ( s 1 , . . . , s n ) ) the weighted norm ( D s f ) L 1 ( w ) ( w ( ξ ) = | ξ | - n ) can be estimated by the sum of L 1 -norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.

Currently displaying 1 – 5 of 5

Page 1