Page 1

Displaying 1 – 6 of 6

Showing per page

Characterizing translation invariant projections on Sobolev spaces on tori by the coset ring and Paley projections

M. Wojciechowski (1993)

Studia Mathematica

We characterize those anisotropic Sobolev spaces on tori in the L 1 and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].

Commutants of the Dunkl Operators in C(R)

Dimovski, Ivan, Hristov, Valentin, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.

Construction de p-multiplicateurs

Francisco González Vieli (1993)

Studia Mathematica

Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over n but not continuously differentiable through S n - 1 and give a p-multiplier criterion for homogeneous functions over 2 . We also exhibit fractal p-multipliers over the real line.

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the type set under...

Currently displaying 1 – 6 of 6

Page 1