C1 Changes of Variable: Beurling-Helson Type Theorem and Hörmander Conjecture on Fourier Multipliers.
We characterize those anisotropic Sobolev spaces on tori in the and uniform norms for which the idempotent multipliers have a description in terms of the coset ring of the dual group. These results are deduced from more general theorems concerning invariant projections on vector-valued function spaces on tori. This paper is a continuation of the author’s earlier paper [W].
2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80The Dunkl operators.* Supported by the Tunisian Research Foundation under 04/UR/15-02.
Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over but not continuously differentiable through and give a p-multiplier criterion for homogeneous functions over . We also exhibit fractal p-multipliers over the real line.
Let , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let , and . Let φ₁,...,φₙ be real functions in such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on given by , where and dx denotes the Lebesgue measure on ℝⁿ. Let and let be the operator norm of from into , where the spaces are taken with respect to the Lebesgue measure. The type set is defined by . In the case for 1 ≤ i,k ≤ n we characterize the type set under...