Page 1

Displaying 1 – 9 of 9

Showing per page

Endpoint bounds of square functions associated with Hankel multipliers

Jongchon Kim (2015)

Studia Mathematica

We prove endpoint bounds for the square function associated with radial Fourier multipliers acting on L p radial functions. This is a consequence of endpoint bounds for a corresponding square function for Hankel multipliers. We obtain a sharp Marcinkiewicz-type multiplier theorem for multivariate Hankel multipliers and L p bounds of maximal operators generated by Hankel multipliers as corollaries. The proof is built on techniques developed by Garrigós and Seeger for characterizations of Hankel multipliers....

Endpoint multiplier theorems of Marcinkiewicz type.

Terence Tao, James Wright (2001)

Revista Matemática Iberoamericana

We establish sharp (H1,L1,q) and local (L logrL,L1,q) mapping properties for rough one-dimensional multipliers. In particular, we show that the multipliers in the Marcinkiewicz multiplier theorem map H1 to L1,∞ and L log1/2L to L1,∞, and that these estimates are sharp.

Equivalence of measures of smoothness in L p ( S d - 1 ) , 1 < p < ∞

F. Dai, Z. Ditzian, Hongwei Huang (2010)

Studia Mathematica

Suppose Δ̃ is the Laplace-Beltrami operator on the sphere S d - 1 , Δ ρ k f ( x ) = Δ ρ Δ ρ k - 1 f ( x ) and Δ ρ f ( x ) = f ( ρ x ) - f ( x ) where ρ ∈ SO(d). Then ω m ( f , t ) L p ( S d - 1 ) s u p Δ ρ m f L p ( S d - 1 ) : ρ S O ( d ) , m a x x S d - 1 ρ x · x c o s t and K ̃ ( f , t m ) p i n f f - g L p ( S d - 1 ) + t m ( - Δ ̃ ) m / 2 g L p ( S d - 1 ) : g ( ( - Δ ̃ ) m / 2 ) are equivalent for 1 < p < ∞. We note that for even m the relation was recently investigated by the second author. The equivalence yields an extension of the results on sharp Jackson inequalities on the sphere. A new strong converse inequality for L p ( S d - 1 ) given in this paper plays a significant role in the proof.

Espaces BMO, inégalités de Paley et multiplicateurs idempotents

Hubert Lelièvre (1997)

Studia Mathematica

Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces B M O ψ q ( ) and B M O ψ q ( , B ) , where ψ q ( x ) = e x q - 1 for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that B M O ψ 1 ( ) = B M O ( ) and B M O ψ 1 ( , B ) = B M O ( , B ) by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of B M O ψ q ( ) . Pisier conjectured that the supports of idempotent multipliers of L ψ q ( ) form a Boolean...

Estimates for the commutator of bilinear Fourier multiplier

Guoen Hu, Wentan Yi (2013)

Czechoslovak Mathematical Journal

Let b 1 , b 2 BMO ( n ) and T σ be a bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ σ κ W s 1 , s 2 ( 2 n ) < for some s 1 , s 2 ( n / 2 , n ] . In this paper, the behavior on L p 1 ( n ) × L p 2 ( n ) ( p 1 , ...

Extensions of weak type multipliers

P. Mohanty, S. Madan (2003)

Studia Mathematica

We prove that if Λ M p ( N ) and has compact support then Λ is a weak summability kernel for 1 < p < ∞, where M p ( N ) is the space of multipliers of L p ( N ) .

Currently displaying 1 – 9 of 9

Page 1