Page 1

Displaying 1 – 17 of 17

Showing per page

Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm

A. Pełczyński, M. Wojciechowski (1993)

Studia Mathematica

Let E be a Banach space. Let L ¹ ( 1 ) ( d , E ) be the Sobolev space of E-valued functions on d with the norm ʃ d f E d x + ʃ d f E d x = f + f . It is proved that if f L ¹ ( 1 ) ( d , E ) then there exists a sequence ( g m ) L ( 1 ) ¹ ( d , E ) such that f = m g m ; m ( g m + g m ) < ; and g m 1 / d g m ( d - 1 ) / d b g m for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding L ( 1 ) ¹ ( d , E ) L ² ( d , E ) . In particular, the embedding into Besov spaces L ¹ ( 1 ) ( d , E ) B p , 1 θ ( p , d ) ( d , E ) is proved, where θ ( p , d ) = d ( p - 1 + d - 1 - 1 ) for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada....

Moltiplicatori spettrali per l'operatore di Ornstein-Uhlenbeck

Giancarlo Mauceri (2004)

Bollettino dell'Unione Matematica Italiana

Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.

Multilinear almost diagonal estimates and applications

Árpád Bényi, Nikolaos Tzirakis (2004)

Studia Mathematica

We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.

Multilinear Fourier multipliers with minimal Sobolev regularity, I

Loukas Grafakos, Hanh Van Nguyen (2016)

Colloquium Mathematicae

We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces H p k , 0 < p k 1 , to Lebesgue spaces L p . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral condition...

Multi-parameter paraproducts.

Camil Muscalu, Jill Pipher, Terence Tao, Christoph Thiele (2006)

Revista Matemática Iberoamericana

We prove that classical Coifman-Meyer theorem holds on any polidisc Td or arbitrary dimension d ≥ 1.

Multiplier extension and sampling theorem on Hardy spaces.

Sun Qiyu (1994)

Publicacions Matemàtiques

Extension by integer translates of compactly supported function for multiplier spaces on periodic Hardy spaces to multiplier spaces on Hardy spaces is given. Shannon sampling theorem is extended to Hardy spaces.

Multiplier operators on product spaces

Hung Viet Le (2002)

Studia Mathematica

The author proves the boundedness for a class of multiplier operators on product spaces. This extends a result obtained by Lung-Kee Chen in 1994.

Multiplier transformations on H p spaces

Daning Chen, Dashan Fan (1998)

Studia Mathematica

The authors obtain some multiplier theorems on H p spaces analogous to the classical L p multiplier theorems of de Leeuw. The main result is that a multiplier operator ( T f ) ( x ) = λ ( x ) f ̂ ( x ) ( λ C ( ...

Multipliers and Wiener-Hopf operators on weighted L p spaces

Violeta Petkova (2013)

Open Mathematics

We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that...

Multipliers for Hermite expansions.

Sundaram Thangavelu (1987)

Revista Matemática Iberoamericana

The aim of this paper is to prove certain multiplier theorems for the Hermite series.

Multipliers of the Hardy space H¹ and power bounded operators

Gilles Pisier (2001)

Colloquium Mathematicae

We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix ( φ ( i + j ) ) i , j 0 is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which is a “completely...

Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators

Błażej Wróbel (2013)

Studia Mathematica

Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators are studied. We prove that L p -uniform, 1 < p < ∞, spectral multipliers extend to holomorphic functions in some subset of a polysector, depending on p. We also characterize L¹-uniform spectral multipliers and prove a Marcinkiewicz-type multiplier theorem. In the appendix we obtain analogous results for systems of Laguerre operators.

Currently displaying 1 – 17 of 17

Page 1