Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I.
Let E be a Banach space. Let be the Sobolev space of E-valued functions on with the norm . It is proved that if then there exists a sequence such that ; ; and for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding . In particular, the embedding into Besov spaces is proved, where for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada....
Questa è una rassegna di alcuni risultati recenti sui moltiplicatori spettrali dell'operatore di Ornstein-Uhlenbeck, un laplaciano naturale sullo spazio euclideo munito della misura gaussiana. I risultati sono inquadrati nell'ambito della teoria generale dei moltiplicatori spettrali per laplaciani generalizzati.
We prove that an almost diagonal condition on the (m + 1)-linear tensor associated to an m-linear operator implies boundedness of the operator on products of classical function spaces. We then provide applications to the study of certain singular integral operators.
We find optimal conditions on m-linear Fourier multipliers that give rise to bounded operators from products of Hardy spaces , , to Lebesgue spaces . These conditions are expressed in terms of L²-based Sobolev spaces with sharp indices within the classes of multipliers we consider. Our results extend those obtained in the linear case (m = 1) by Calderón and Torchinsky (1977) and in the bilinear case (m = 2) by Miyachi and Tomita (2013). We also prove a coordinate-type Hörmander integral condition...
We prove that classical Coifman-Meyer theorem holds on any polidisc Td or arbitrary dimension d ≥ 1.
Extension by integer translates of compactly supported function for multiplier spaces on periodic Hardy spaces to multiplier spaces on Hardy spaces is given. Shannon sampling theorem is extended to Hardy spaces.
The author proves the boundedness for a class of multiplier operators on product spaces. This extends a result obtained by Lung-Kee Chen in 1994.
The authors obtain some multiplier theorems on spaces analogous to the classical multiplier theorems of de Leeuw. The main result is that a multiplier operator
We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that...
The aim of this paper is to prove certain multiplier theorems for the Hermite series.
We study boundedness of certain multiplier transforms associated to the special Hermite operator.
We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which is a “completely...
Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators are studied. We prove that -uniform, 1 < p < ∞, spectral multipliers extend to holomorphic functions in some subset of a polysector, depending on p. We also characterize L¹-uniform spectral multipliers and prove a Marcinkiewicz-type multiplier theorem. In the appendix we obtain analogous results for systems of Laguerre operators.