Some weighted estimates for Stein's maximal function.
We characterize the pairs of weights on ℝ for which the operators are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p < q < ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on , while k is defined on . If , , 0 ≤ β ≤ α ≤ 1, we obtain the operator . For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal weights and...
We study the boundedness of the one-sided operator between the weighted spaces and for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of from to , where denotes the operator M¯ iterated k times.
We develop a spectral-theoretic harmonic analysis for an arbitrary UMD space X. Our approach utilizes the spectral decomposability of X and the multiplier theory for to provide on the space X itself analogues of the classical themes embodied in the Littlewood-Paley Theorem, the Strong Marcinkiewicz Multiplier Theorem, and the M. Riesz Property. In particular, it is shown by spectral integration that classical Marcinkiewicz multipliers have associated transforms acting on X.
Writing . E. Stein conjecturedfor , and . We prove this conjecture. We prove also a.e. We only assume .
We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, and BMO of classical ℒ-square functions.
We establish L2 and Lp bounds for a class of square functions which arises in the study of singular integrals and boundary value problems in non-smooth domains. As an application, we present a simplified treatment of a class of parabolic smoothing operators which includes the caloric single layer potential on the boundary of certain minimally smooth, non-cylindrical domains.
A number of recent results in Euclidean harmonic analysis have exploited several adjacent systems of dyadic cubes, instead of just one fixed system. In this paper, we extend such constructions to general spaces of homogeneous type, making these tools available for analysis on metric spaces. The results include a new (non-random) construction of boundedly many adjacent dyadic systems with useful covering properties, and a streamlined version of the random construction recently devised by H. Martikainen...