Displaying 1081 – 1100 of 1635

Showing per page

Problems on averages and lacunary maximal functions

Andreas Seeger, James Wright (2011)

Banach Center Publications

We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to L 1 , bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an L p regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an L p regularity result...

Radial maximal function characterizations for Hardy spaces on RD-spaces

Loukas Grafakos, Liguang Liu, Dachun Yang (2009)

Bulletin de la Société Mathématique de France

An RD-space 𝒳 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type 𝒳 having “dimension” n , there exists a p 0 ( n / ( n + 1 ) , 1 ) such that for certain classes of distributions, the L p ( 𝒳 ) quasi-norms of their radial maximal functions and grand maximal functions are equivalent when p ( p 0 , ] . This result yields a radial maximal function characterization for Hardy spaces on 𝒳 .

Rearrangement estimates of the area integrals

A. K. Lerner (2002)

Colloquium Mathematicae

We derive weighted rearrangement estimates for a large class of area integrals. The main approach used earlier to study these questions is based on distribution function inequalities.

Recent developments in the theory of function spaces with dominating mixed smoothness

Schmeisser, Hans-Jürgen (2007)

Nonlinear Analysis, Function Spaces and Applications

The aim of these lectures is to present a survey of some results on spaces of functions with dominating mixed smoothness. These results concern joint work with Winfried Sickel and Miroslav Krbec as well as the work which has been done by Jan Vybíral within his thesis. The first goal is to discuss the Fourier-analytical approach, equivalent characterizations with the help of derivatives and differences, local means, atomic and wavelet decompositions. Secondly, on this basis we study approximation...

Recent progress on the Kakeya conjecture.

Nets Katz, Terence Tao (2002)

Publicacions Matemàtiques

We survey recent developments on the Kakeya problem.[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].

Refined Hardy inequalities

Hajer Bahouri, Jean-Yves Chemin, Isabelle Gallagher (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.

Currently displaying 1081 – 1100 of 1635