Semigroup compactifications by generalized distal functions and a fixed point theorem.
For two Banach algebras and ℬ, an interesting product , called the θ-Lau product, was recently introduced and studied for some nonzero characters θ on ℬ. Here, we characterize some notions of amenability as approximate amenability, essential amenability, n-weak amenability and cyclic amenability between and ℬ and their θ-Lau product.
Let A be a semisimple commutative regular tauberian Banach algebra with spectrum . In this paper, we study the norm spectra of elements of and present some applications. In particular, we characterize the discreteness of in terms of norm spectra. The algebra A is said to have property (S) if, for all , φ has a nonempty norm spectrum. For a locally compact group G, let denote the C*-algebra generated by left translation operators on and denote the discrete group G. We prove that the Fourier...
The aim of this paper is to study mean value operators on the reduced Heisenberg group Hn/Γ, where Hn is the Heisenberg group and Γ is the subgroup {(0,2πk): k ∈ Z} of Hn.
Consider a semigroup action on a set. We derive conditions, in terms of the induced action of the semigroup on {0,1}-valued probability charges, which ensure that all invariant probability charges are strongly continuous.
We introduce and study strongly invariant means m on commutative hypergroups, , x ∈ K, . We show that the existence of such means is equivalent to a strong Reiter condition. For polynomial hypergroups we derive a growth condition for the Haar weights which is equivalent to the existence of strongly invariant means. We apply this characterization to show that there are commutative hypergroups which do not possess strongly invariant means.