Wave equation and multiplier estimates on ax + b groups
Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...