Center of Group Algebras.
Let G be a locally compact group, and consider the weakly almost periodic functionals on M(G), the measure algebra of G, denoted by WAP(M(G)). This is a C*-subalgebra of the commutative C*-algebra M(G)*, and so has character space, say . In this paper, we investigate properties of . We present a short proof that can naturally be turned into a semigroup whose product is separately continuous; at the Banach algebra level, this product is simply the natural one induced by the Arens products. This...
Let G be a locally compact group with left Haar measure μ, and let L1(G) be the convolution Banach algebra of integrable functions on G with respect to μ. In this paper we are concerned with the investigation of the structure of G in terms of analytic semigroups in L1(G).
The existence of a projection onto an ideal I of a commutative group algebra depends on its hull Z(I) ⊆ Ĝ. Existing methods for constructing a projection onto I rely on a decomposition of Z(I) into simpler hulls, which are then reassembled one at a time, resulting in a chain of projections which can be composed to give a projection onto I. These methods are refined and examples are constructed to show that this approach does not work in general. Some answers are also given to previously asked...
We introduce and study the notions of w*-approximate Connes amenability and pseudo-Connes amenability for dual Banach algebras. We prove that the dual Banach sequence algebra ℓ¹ is not w*-approximately Connes amenable. We show that in general the concepts of pseudo-Connes amenability and Connes amenability are distinct. Moreover the relations between these new notions are also discussed.
We show that the dual version of our factorization [J. Funct. Anal. 261 (2011)] of contractive homomorphisms φ: L¹(F) → M(G) between group/measure algebras fails to hold in the dual, Fourier/Fourier-Stieltjes algebra, setting. We characterize the contractive w*-w* continuous homomorphisms between measure algebras and (reduced) Fourier-Stieltjes algebras. We consider the problem of describing all contractive homomorphisms φ: L¹(F) → L¹(G).
Mathematics Subject Classification: 43A20, 26A33 (main), 44A10, 44A15We prove equalities in the Banach algebra L1(R+). We apply them to integral transforms and fractional calculus.* Partially supported by Project BFM2001-1793 of the MCYT-DGI and FEDER and Project E-12/25 of D.G.A.
For a locally compact group G we consider the algebra CD(G) of convolution-dominated operators on L²(G), where an operator A: L²(G) → L²(G) is called convolution-dominated if there exists a ∈ L¹(G) such that for all f ∈ L²(G) |Af(x)| ≤ a⋆|f|(x), for almost all x ∈ G. (1) The case of discrete groups was treated in previous publications [fgl08a, fgl08]. For non-discrete groups we investigate a subalgebra of regular convolution-dominated operators generated by product convolution operators, where the...